MAX materials and MXene materials are new two-dimensional materials who have attracted much attention lately, with excellent physical, chemical, and mechanical properties, and possess shown broad application prospects in numerous fields. The following is a comprehensive introduction to the properties, applications, and development trends of MAX and MXene materials.
Precisely What is MAX material?
MAX phase material is actually a layered carbon nitride inorganic non-metallic material comprising M, A, X elements on the periodic table, collectively known as “MAX phase”. M represents transition metal elements, including titanium, zirconium, hafnium, etc., A represents the main group elements, including aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer is made up of M, A, X, the three aspects of the alternating composition arrangement, with hexagonal lattice structure. Because of their electrical conductivity of metal and strength, high-temperature resistance and corrosion resistance of structural ceramics, these are popular in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding as well as other fields.
Properties of MAX material
MAX material is really a new form of layered carbon nitride inorganic non-metallic material with all the conductive and thermal conductive qualities of metal, comprising three elements with all the molecular formula of Mn 1AXn (n=1, 2 or 3), where M refers back to the transition metal, A means the main-group elements, and X refers to the aspects of C and N. The MXene material is really a graphene-like structure obtained through the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MAX Phases and MXenes are novel two-dimensional nanomaterials made from carbon, nitrogen, oxygen, and halogens.
Applications of MAX materials
(1) Structural materials: the excellent physical properties of MAX materials make sure they are have a variety of applications in structural materials. For instance, Ti3SiC2 is a very common MAX material with good high-temperature performance and oxidation resistance, which could be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials will also be used in functional materials. For instance, some MAX materials have good electromagnetic shielding properties and conductivity and could be used to manufacture electromagnetic shielding covers, coatings, etc. In addition, some MAX materials also provide better photocatalytic properties, and electrochemical properties can be utilized in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which may be utilized in energy materials. For example, K4(MP4)(P4) is one in the MAX materials rich in ionic conductivity and electrochemical activity, which can be used a raw material to produce solid-state electrolyte materials and electrochemical energy storage devices.
Exactly What are MXene materials?
MXene materials certainly are a new form of two-dimensional nanomaterials obtained by MAX phase treatment, just like the structure of graphene. The outer lining of MXene materials can communicate with more functional atoms and molecules, as well as a high specific area, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation ways of MXene materials usually include the etching therapy for the MAX phase and the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties including electrical conductivity, magnetism and optics may be realized.
Properties of MXene materials
MXene materials certainly are a new kind of two-dimensional transition metal carbide or nitride materials composed of metal and carbon or nitrogen elements. These materials have excellent physical properties, like high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., as well as good chemical stability and the ability to maintain high strength and stability at high temperatures.
Applications of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and therefore are commonly used in energy storage and conversion. For example, MXene materials can be used as electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. In addition, MXene materials may also be used as catalysts in fuel cells to enhance the activity and stability in the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity can be used in electromagnetic protection. For example, MXene materials bring electromagnetic shielding coatings, electromagnetic shielding cloth, along with other applications in electronic products and personal protection, enhancing the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and can be utilized in sensing and detection. For example, MXene materials can be used as gas sensors in environmental monitoring, which may realize high sensitivity and selectivity detection of gases. Additionally, MXene materials could also be used as biosensors in medical diagnostics as well as other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. In the future, using the continuous progress of technology and science and the improving demand for services for applications, the preparation technology, performance optimization, and application areas of MAX and MXene materials will be further expanded and improved. The subsequent aspects can become the main focus of future research and development direction:
Preparation technology: MAX and MXene materials are mostly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Down the road, new preparation technologies and methods may be further explored to comprehend a much more efficient, energy-saving and eco friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials is already high, however, there is still room for further optimization. Later on, the composition, structure, surface treatment as well as other aspects of the content could be studied and improved in depth to improve the material’s performance and stability.
Application areas: MAX materials and MXene materials happen to be widely used in numerous fields, but you may still find many potential application areas to be explored. Later on, they could be further expanded, including in artificial intelligence, biomedicine, environmental protection and other fields.
In conclusion, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show an extensive application prospect in many fields. With all the continuous progress of science and technology as well as the continuous improvement of application demand, the preparation technology, performance optimization and application parts of MAX and MXene materials is going to be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.